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a  b  s  t  r  a  c  t

The  chromatographic  elution  has  been  studied  from  different  perspectives.  However,  in  spite  of  the sim-
plicity and  evident  deficiencies  of  the plate  model  proposed  by  Martin  and  Synge,  it has  served  as  a  basis
for  the  characterization  of  columns  up-to-date.  This  approach  envisions  the  chromatographic  column
as an  arbitrary  number  of theoretical  plates,  each  of  them  consisting  of  identical  repeating  portions  of
mobile  phase  and  stationary  phase.  Solutes  partition  between  both  phases,  reaching  the  equilibrium.
Mobile  phase  transference  between  the  theoretical  plates  is  assumed  to be infinitesimally  stepwise  (or
continuous),  giving  rise  to  the  mixing  of  the  solutions  in  adjacent  plates.  This  yields  an  additional  peak
broadening,  which  is  added  to  the  dispersion  associated  to  the  equilibrium  conditions.  It  is  commonly
assumed  that when  the solute  concentration  is  sufficiently  small,  chromatographic  elution  is  carried  out
under  linear  conditions,  which  is the  case  in  almost  all analytical  applications.  When  the solute  con-
centration  increases  above  a value  where  the  stationary  phase  approximates  saturation  (i.e. becomes
overloaded),  non-linear  elution  is  obtained.  In  addition  to overloading,  another  source  of  non-linearity
can  be  a  slow  mass  transfer.  An  extended  Martin  and  Synge  model  is  here  proposed  to include  slow
mass-transfer  kinetics  (with  respect  to flow  rate)  between  the  mobile  phase  and  stationary  phase.  We

show  that  there  is  a linear  relationship  between  the  variance  and  the  ratio  of  the  kinetic  constants  for  the
mass transfer  in  the  flow  direction  (�)  and  the  mass  transfer  between  the  mobile  phase  and  stationary
phase  (�),  which  has  been  called  the  kinetic  ratio  (� = �/�).  The  proposed  model  was  validated  with  data
obtained  according  to  an  approach  that simulates  the  solute  migration  through  the  theoretical  plates.  An
experimental  approach  to  measure  the  deviation  from  the equilibrium  conditions  using  the experimental
peak  variances  and  retention  times  at several  flow  rates  is also  proposed.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

Finding an accurate model to describe the chromatographic elu-
ion is practically an unsolvable problem, as has been commented
y Giddings and Eyring [1],  due to the complexity and the unknown
actors involved in the process, beginning with the nature of the

ulti-site surface up to the particularities of the stationary phase
acking. In spite of this, a huge effort has been done to develop
odels to understand the peak shape and the main factors that

ffect it [2–7].
The models that describe the equilibrium conditions in liquid

hromatography can be classified as linear and non-linear [6,8].
n the linear models, the amount of solute associated to the sta-
ionary phase is assumed to be proportional to its concentration

n the mobile phase. This implies that the equilibrium between
he mobile phase and stationary phase is instantaneous. Also, the
ample components do not compete for the stationary phase, nor

∗ Corresponding author. Tel.: +34 96 354 3184; fax: +34 96 354 4436.
E-mail address: Juan.Baeza@uv.es (J.J. Baeza-Baeza).

021-9673/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2011.05.086
interact among them; their elution is, therefore, independent from
each other. This means that each peak in a mixture has indepen-
dent characteristics and is identical to that obtained upon elution
of an isolated standard.

Linear chromatography has been studied from three different
perspectives: (i) the plate models proposed by Martin and Synge
[9], and Craig [10], (ii) the differential rate model that describes
the mass balance and mass-transfer kinetics, proposed by Lapidus
and Amundson [11], and van Deemter et al. [12], and extensively
applied by other authors [13–17],  and (iii) the statistical models
developed by Giddings and Eyring [1],  and followed by Dondi et al.
[18,19].

The plate models envision the chromatographic column as an
arbitrary number of theoretical plates, each of them consisting of
identical repeating portions of stationary phase and mobile phase.
It is assumed that the solute partitions between both phases, reach-
ing the equilibrium. In the model proposed by Craig [10], there is

no mixing mechanism and the mobile phase is transferred down-
stream completely from one plate to the following, in a discrete
way  (stepwise). The final band broadening is produced exclusively
by the quantitativeness of the distribution equilibrium of the solute

dx.doi.org/10.1016/j.chroma.2011.05.086
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:Juan.Baeza@uv.es
dx.doi.org/10.1016/j.chroma.2011.05.086
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Fig. 1. Change in the moles of solute in the mobile phase associated to a theoretical
J.J. Baeza-Baeza, M.C. García-Álvarez-Coq

etween the two phases along the column theoretical plates, which
ives rise to solute dispersion along the theoretical plates. The Craig
odel gives rise to a distribution, which can be approximated to a
aussian profile with the following variance [4]:

2 = tR(tR − t0)
N

(1)

here tR is the retention time (time at the peak maximum), t0 the
ead time (the time at which a non-retained solute elutes) and N
he number of theoretical plates (or efficiency). According to this

odel, a non-retained solute (i.e. in the absence of interactions)
ould elute with the dead volume, with a null peak width.

In the model proposed by Martin and Synge [9],  mobile phase
ransference between plates is assumed to be infinitesimally step-
ise (or continuous), giving rise to the mixing of the solutions in

djacent plates. This yields an additional peak broadening, which
s added to the dispersion associated to the equilibrium conditions.
he final peak profile is an Erlang distribution [20], which can also
e approximated to a Gaussian with a variance:

2 = t2
R

N
(2)

In the absence of interactions between solute and stationary
hase (i.e. for a non-retained solute), this model predicts a minimal
eak broadening:

2
0 = t2

0
N

(3)

In spite of the simplicity and evident deficiencies of the Martin
nd Synge plate model, it has served as a basis for the characteriza-
ion of columns up-to-date. These deficiencies have been partially
vercome by newer models [4,7,17]. We  make a new proposal,
hich is explained below.

It is commonly assumed that when the solute concentration
s sufficiently small, chromatographic elution is carried out under
inear conditions, which is the case in almost all analytical applica-
ions. When the solute concentration increases above a value where
he stationary phase approximates saturation (i.e. becomes over-
oaded), non-linear elution conditions are obtained. This means
hat the concentration in the stationary phase increases slower
han in the mobile phase. Accordingly, solutes at different con-
entrations tend to move along the column at different velocities:
he peaks become asymmetrical and the retention times depend
n the solute concentration in the mobile phase. This behaviour is
escribed by non-linear isotherms that follow different models, as
he Langmuir or Freundlich-type isotherms [8].

In addition to overloading, another source of non-linearity can
e a slow mass transfer. In this case, the changes in the solute con-
entration in the stationary phase will depend, not only on the
olute concentration in the mobile phase, but also on the station-
ry phase. In this work, the Martin and Synge model is extended to
nclude slow mass-transfer kinetics between the mobile phase and
tationary phase.

. Theory

The plate count theory assumes that the chromatographic col-
mn  is divided in N theoretical plates. According to this, we  have
eveloped a global approach that considers the partition process

long the whole column. A system of N differential equations (one
quation for each theoretical plate) is obtained, which is solved
sing the Laplace transform. The approach is applied below to equi-

ibrium and slow mass-transfer conditions in chromatography.
plate. A and B indicate the solute in the mobile phase and stationary phase, respec-
tively; dni−1,i and dni,i+1 denote the moles that enter and leave the i theoretical plate
in  dt.

2.1. Linear equilibrium elution

2.1.1. Peak function
Fig. 1 depicts the mass transfer for a given solute associated to an

i theoretical plate, in an infinitesimal time interval dt.  The change
in the moles of solute in a theoretical plate will be:

dni = [A]i−1dVm − [A]idVm (4)

where [A]i and [A]i−1 are the solute concentrations in the mobile
phase associated to the i and i−1 theoretical plates, respectively,
and dVm is the mobile phase volume that is transferred from one
plate to the next in the time interval dt.  Assuming that the distri-
bution equilibrium between mobile phase and stationary phase is
reached instantaneously, the partition constant is expressed as:

K = [B]i

[A]i
= bi

ai

Vm

Vs
(5)

[B]i is the solute concentration in the stationary phase, and Vm and
Vs are the volumes of mobile phase and stationary phase associated
to a theoretical plate, respectively, which do not change along the
column; ai and bi are the moles of solute in the mobile phase and
stationary phase in the i theoretical plate, respectively. The total
moles in the i theoretical plate will be:

ni = ai + bi (6)

From Eq. (5):

ni = ai + Kai
Vs

Vm
= ai

(
1 + K

Vs

Vm

)
(7)

The moles of solute in the mobile phase can be thus expressed
as a fraction of the total moles:

ai = pni (8)

with

p = 1(
1 + K Vs

Vm

) = 1
1 + k

= t0

tR
(9)

k being the retention factor:

k = tR − t0

t0
(10)

Therefore, the solute concentration in the mobile phase associ-
ated to the i theoretical plate will be:

[A]i = pni

Vm
(11)

On the other hand, dVm and dt are related through:

dVm = udt = NVm

t0
dt (12)

where u is the flow rate and NVm represents the total column vol-

ume  accessible to the mobile phase. Going back to Eq. (4),  and taking
into account Eqs. (11) and (12):

dni = N

t0
pni−1dt − N

t0
pnidt (13)



5 que / J

w
p

�

t
a

w
t
b
e

n

I
m
m
o

n

n

a

n

o
d

f

z
i
m

f

t

f

168 J.J. Baeza-Baeza, M.C. García-Álvarez-Co

The change in the moles of solute in the time interval dt will be:

dni

dt
= �pni−1 − �pni (14)

here � is the flow rate expressed as the number of theoretical
lates per time unit:

 = N

t0
(15)

Based on Eq. (14), a system of differential equations can be writ-
en to describe the change in the moles of solute in the mobile phase
ssociated to each theoretical plate, considering the whole column:

n(1)
1 = −�pn1

n(1)
2 = �pn1 − �pn2

...
n(1)

N = �pnN−1 − �pnN

(16)

here n(1)
i

= dni/dt,  and n1 . . . nN are the moles of solute in each
heoretical plate, which change with time. Eqs. (16) can be solved
y applying a Laplace transform, which reduces a linear differential
quation with constant coefficients to an algebraic equation [21]:

(1)
i

= rni − ni,0 (17)

n Eq. (17), r is the Laplace variable in the r-domain, and ni,0 the
oles of solute in the i theoretical plate at t = 0. The number of
oles at t = 0 is n0 for the first theoretical plate, and zero for the

ther plates. Therefore:

−n0 = −(r + �p)n1
0 = �pn1 − (r + �p)n2
...
0 = �pnN−1 − (r + �p)nN

(18)

The first equation can be solved independently:

1 = n0

(r + �p)
(19)

Once n1 is known, n2 can be calculated as:

2 = n0
�p

(r + �p)2
(20)

nd so on for the next theoretical plates up to the last one:

N = n0
(�p)N−1

(r + �p)N
(21)

The solute monitored at the detector is the portion that flows
ut of the N plate in each dt.  The peak profile at the detector will be
escribed by:

 (r) = �pnN = n0

(
�p

r + �p

)N

(22)

The integration of this equation in the time-domain between
ero and ∞ yields n0, since the whole amount of analyte that enters
nto the column and migrates through it, must flow out. The nor-

alized peak function in the r-domain is:

n(r) =
(

�p

r + �p

)N

= (Fr)N (23)

Considering the inverse Laplace transform [21]:

1

(r + �p)N
= tN−1

(N − 1)!
e−�pt (24)
he function in the time domain will be:

 (t) = (�p)N

(N − 1)!
tN−1e−�pt (25)
. Chromatogr. A 1218 (2011) 5166– 5174

which is equivalent to equations reported by Martin and Synge [9],
and Felinger [4].

Eq. (25) is an Erlang distribution, which is related with the
Gamma  function [20]. It can be checked that it is a normalized
equation [22]:∫ ∞

0

f (t)dt = (�p)N

(N − 1)!

∫ ∞

0

tN−1e−�ptdt = (�p)N

(N − 1)!
(N − 1)!

(�p)N
= 1

(26)

2.1.2. Mean time, variance and skewness of the peak function
To obtain the moments about the origin, the following property

of the Laplace transformation should be considered [13,21]:

�′
k =

∫ ∞

0

tkf (t)dt = (−1)klim
r→0

dkfn(r)
drk

(27)

From Eq. (23):

�′
0 = (−1)0(Fr=0)N = 1 (28)

since Fr =0 = 1. The mean value is the first moment about the
origin:

�′
1 = t̄  = (−1)N(Fr=0)N−1F (1)

r=0 (29)

where:

F (1)
r=0 = −�p

(r + �p)2
= − 1

�p
(30)

By combining Eqs. (9),  (10), and (15), (23), (29) and (30):

�′
1 = t̄ = N

�p
= t0(1 + k) = tR (31)

The variance is the second moment about the mean:

�2 = �2 = �′
2 − �′2

1 (32)

From Eqs. (23) and (27):

�2
′ = (−1)2[N(N − 1)FN−2

r=0 (F (1)
r=0)

2 + NFN−1
r=0 F (2)

r=0] (33)

and from Eq. (30):

F (2)
r=0 = 2�p

(r + �p)3
= 2

(�p)2
(34)

which yields:

�′
2 = N(N − 1)

(�p)2
+ 2N

(�p)2
(35)

From Eq. (32) (see also Eq. (31)):

�2 = �2 = N

(�p)2
= t2

R
N

(36)

The third moment about the mean is related to the peak skew-
ness (asymmetry) [23]. It can be calculated as:

�3 = �′
3 − 3�′

1�′
2 + 2�′3

1 (37)

Again, from Eqs. (27) and (33):

�′
3 = (−1)3[N(N − 1)(N − 2)FN−3

r=0 (F (1)
r=0)

3

+ 3N(N − 1)FN−2
r=0 F (1)

r=0F (2)
r=0 + NFN−1

r=0 F (3)
r=0] (38)
where:

F (3)
r=0 = −6�p

(r + �p)4
= − 6

(�p)3
(39)
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nd

′
3 = N(N − 1)(N − 2)

(�p)3
+ 6N(N − 1)

(�p)3
+ 6N

(�p)3
(40)

From Eq. (37), together with Eqs. (31), (35) and (40):

3 = 2N

(�p)3
= 2t3

R

N2
(41)

Finally, the peak skewness can be estimated from [20]:

1 = �3

�3/2
2

= 2
N1/2

(42)

Therefore, in the Martin and Synge model at equilibrium con-
itions, the retention time and peak width only depend on the
artition constant, the flow rate and the number of theoretical
lates in the column. The peak skewness decreases with N.

.2. Slow mass transfer

.2.1. Peak function
We will now consider that the mass-transfer rate between the

obile phase and stationary phase is finite. To understand how this
ffects the peak profile, we will outline an extended Martin and
ynge model, which includes explicitly the mass-transfer kinetics.
hen the kinetics is sufficiently slow (with respect to the flow rate),

he elution depends on both moles of solute in the mobile phase (a)
nd stationary phase (b). The mass transfer from the mobile phase
o the stationary phase in each theoretical plate is described by the
ow-rate equation [24]:

A,i =
(

∂ai

∂t

)
transfer

= v(aeq,i − ai) (43)

here ai are the total moles of solute in the mobile phase, aeq,i the
oles at equilibrium with the stationary phase, and v the mass-

ransfer rate constant between both phases. When the equilibrium
s reached, Eq. (8) holds. Taking into account Eq. (6):

eq,i = pni = p(ai + bi) (44)

By substituting Eq. (44) in Eq. (43) and making:

 = 1 − p (45)

A,i =
(

∂ai

∂t

)
transfer

= vpbi − vqai = sbi − mai (46)

Consequently, the change in the moles of solute in the stationary
hase will be:

B,i = −
(

∂ai

∂t

)
transfer

= mai − sbi (47)

Besides the mass transfer between the mobile phase and sta-
ionary phase, there is a mobile phase flow through the theoretical
lates. For two consecutive plates, and taking into account Eqs. (8)
nd (14):

∂ai

∂t

)
flow

= �ai−1 − �ai (48)

The change in the moles of solute due to both processes will be:
dai

dt
= sbi − mai + �ai−1 − �ai = �ai−1 − (� + m)ai + sbi (49)

dbi

dt
= mai − sbi (50)
 Chromatogr. A 1218 (2011) 5166– 5174 5169

For the whole column, the following system of differential equa-
tions can be outlined:

a(1)
1 = −(� + m)a1 + sb1

b(1)
1 = ma1 − sb1

a(1)
2 = �a1 − (� + m)a2 + sb2

b(1)
2 = ma2 − sb2

...
a(1)

N = �aN−1 − (� + m)aN + sbN

b(1)
N = maN − sbN

(51)

where a(1)
i

= dai/dt and b(1)
i

= dbi/dt; a1 . . . aN and b1. . . bN are
the moles of solute in the mobile phase and stationary phase asso-
ciated to each theoretical plate, respectively, which change with
time. Solving the system of equations by applying a Laplace trans-
form (Eq. (17)) for the variables ai and bi, and assuming again that
n0 are the moles of solute in the first theoretical plate, the following
system of algebraic equations is obtained:

−n0 = −(r + � + m)a1 + sb1
0 = ma1 − (r + s)b1
0 = �a1 − (r + � + m)a2 + sb2
0 = ma2 − (r + s)b2
...
0 = �aN−1 − (r + � + m)aN + sbN

0 = maN − (r + s)bN

(52)

From the two first equations:

−n0 =
(

−(r + � + m)  + ms

r + s

)
a1 (53)

from which:

a1 = n0
r + s

(r + � + m)(r + s) − ms
= n0

r + s

r2 + (m + s + �)r + �s

= n0
r + s

(r + r1)(r + r2)
(54)

Taking into account that (from Eqs. (45) and (46)):

m + s = v q + v p = v (55)

the roots r1 and r2 in Eq. (54) can be calculated as:

r1 = v + � −
√

(v + �)2 − 4�s

2
= S − R

2
(56)

r2 = v + � +
√

(v + �)2 − 4�s

2
= S + R

2
(57)

Once a1 is known (Eq. (54)), a2 can be calculated, and so on for
all theoretical plates. Thus, for the N theoretical plate:

aN = n0�N−1
(

r + s

(r + r1)(r + r2)

)N

(58)

Similarly to Eq. (22), the detected solute will be:

f (r) = �aN (59)

and the normalized function:

fn(r) =
(

�(r + s)
(r + r1)(r + r2)

)N

= (Fr)N (60)
In this case, the transformation of the function in the r-domain
Eq. (60) to that in the time-domain (f(t)) is not direct. In Appendix
A, we  develop a transformed f(t) function for conditions close to the
equilibrium.
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.2.2. Mean time, variance and skewness of the peak function
The mean time, variance and skewness of the peak function

orresponding to a slow mass-transfer (Eq. (60)) are calculated sim-
larly to the equilibrium conditions as shown in Section 2.1.2. It
hould be noted that at slow mass-transfer conditions (see Eqs.
56) and (57)):

1r2 = �s (61)

1 + r2 = S = v + � (62)

eing s = vp (see Eq. (46)). In order to calculate the mean time, vari-
nce and skewness, we need the following derivatives:

(1)
r = �

(r + r1)(r + r2) − (r + s)(2r + r1 + r2)

(r + r1)2(r + r2)2

= −�
r2 + 2rs − r1r2 + s(r1 + r2)

(r + r1)2(r + r2)2
= −�

r2 + 2rs + sv

(r + r1)2(r + r2)2
(63)

here

(1)
r=0 = − 1

�p
(64)

For the second derivative:

(2)
r = 2�

r3 + 3r2s + 3rsv + sv2 − �s2 + �sv

(r + r1)3(r + r2)3
(65)

(2)
r=0 = 2

1 + �(1 − p)

(�p)2
(66)

ith

 = �

v
(67)

hich we have called the kinetic ratio: the ratio of the mass-transfer
inetic constants in the flow direction and between the mobile
hase and stationary phase.

For the third derivative:

(3)
r =6�

(r2 +2rs + sv)(r+r1)(r+r2)−(2r  + v  + �)(r3 + 3r2s + 3rsv + sv2 − �s2 + �sv)

(r + r1)4(r + r2)4

(68)

(3)
r=0 = −6

1 + �(2 + �)(1 − p)

(�p)3
(69)

The first moment about the origin is obtained by combining
qs. (29) and (64). This yields Eq. (31), which indicates that there
s no change in the peak location with respect to the equilibrium
onditions. From Eqs. (33), (64) and (66), we obtain:

′
2 = N(N − 1)

(�p)2
+ 2N

1 + �(1 − p)

(�p)2
(70)

nd the variance for slow mass-transfer conditions (see Eq. (32)):

2 = �2 = N

(�p)2
[1 + 2�(1 − p)] = t2

R
N

[1 + 2�(1 − p)] (71)

By combining Eqs. (38), (64), (66) and (69):

3
′ = N(N − 1)(N − 2)

(�p)3

+ 6N(N − 1)

(�p)3
[1 + �(1 − p)] + 6N

(�p)3
[1 + �(2 + �)(1 − p)] (72)
From Eq. (37), the third moment is given by:

3 = 2N

(�p)3
[1 + 3�(1 − p)(1 + �)] = 2t3

R

N2
[1 + 3�(1 − p)(1 + �)] (73)
. Chromatogr. A 1218 (2011) 5166– 5174

and the peak skewness is estimated from:

�1 = �3

�3/2
2

= 2
N1/2

[1 + 3�(1 − p)(1 + �)]

[1 + 2�(1 − p)]3/2
(74)

Note that at equilibrium conditions, � = 0 and Eqs. (71) and (74)
give rise to Eqs. (36) and (42).

3. Experimental

The probe compounds were the diuretics xipamide (kindly
donated by Lacer, Barcelona, Spain), benzthiazide and furosemide
(Sigma, St. Louis, MO,  USA). The drugs were dissolved in a few millil-
itres of acetonitrile, assisted by an ultrasonic bath and diluted with
water. The concentration of the injected solutions was 10 �g/mL.

The chromatographic column was a Zorbax SB C18 (Agilent,
Waldbronn, Germany, 150 mm  × 4.6 mm I.D. and 5 �m particle
size), protected with a similar C18 guard column (30 mm × 4.0 mm
I.D. and 5 �m particle size). The mobile phases were prepared with
acetonitrile (Scharlab, Barcelona) and water. The pH was buffered
at 3 with 0.01 M citric acid (Panreac, Barcelona) and NaOH (Schar-
lab). The pH of the mobile phases was  measured after the addition
of the organic solvent, using an electrode calibrated with aqueous
buffers.

Nanopure water (Barnstead, Sybron, Boston, MA,  USA) was
used throughout. Probe compound solutions and mobile phases
were filtered through 0.45 �m Nylon membranes with a diame-
ter of 17 mm  (Cameo) and 47 mm  (Magna), respectively (Osmonics,
Herental, Belgium).

The HPLC system (Agilent, Series 1100) consisted of an isocratic
pump, an automatic sampler, a UV-visible detector set at 254 nm,
and a temperature controller module set at 25 ◦C. The flow rate was
in the 0.25 to 2 mL/min range, and the injected volume was 5 �L.
Data acquisition was  carried out with an HPChemStation (Agilent).
The mathematical treatment was  implemented in Visual Basic 6.0
(Microsoft, Seattle, WA,  USA).

4. Results and discussion

4.1. Simulation of solute migration

The peak profile described by Eqs. (31) and (71) was checked by
comparison with the profile obtained by simulation of the solute
migration, which is explained in this section. For this purpose,
we assumed a hypothetical column divided in N = 1000 theoretical
plates, with the total amount of solute in the mobile phase initially
(t = 0) associated to the first theoretical plate.

The transference of the mobile phase volume from one theo-
retical plate to the next was divided in M = 100 steps. In each step,
a hundredth of the volume associated to a theoretical plate was
moved to the next plate, which displaced another hundredth of
the volume. This, in turn, was  transferred to the next plate. After
each transfer, the mobile phase in each plate was  homogenized.
The process, which takes place during a time interval:

ıt = t0

N × M
(75)

is illustrated in Fig. 1. After homogenization, solute mass transfer
between the mobile phase and stationary phase can be described
by the following differential equations for each theoretical plate:

ai
(1) = −mai + sbi
(1) (76)
bi = mai − sbi

whose solution yields:

ai = aeq,i + (ai,0 − aeq,i)e
−vıt (77)
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i = beq,i + (bi,0 − beq,i)e
−vıt (78)

here v is described by Eq. (43), ıt takes the value given by Eq. (75),
nd:

eq,i = (a0,i + b0,i)p (79)

eq,i = (a0,i + b0,i)(1 − p) (80)

here p is defined by Eq. (9),  and a0,i and b0,i are the initial con-
entrations of solute in the mobile phase and stationary phase,
espectively, in the i theoretical plate at a given time (a multiple
f ıt). The process was repeated up to achieve full elution from the
olumn in a summation of time intervals ıt.

As observed in Eq. (75), the peak profile will depend on the
ssumed number of steps, M,  in the transference of the mobile
hase volume from one theoretical plate to the next one. Fig. 2
hows the change in the peak variance with M.  The Craig approach
ssumes M = 1 (there is no additional broadening due to mixing of
he portions of mobile phase inside a theoretical plate). The Martin
nd Synge approach is opposite: it considers a high M value. For
urther studies, the simulation was carried out for M = 100, which
s sufficiently high to yield variance values close enough to those
ssumed in the Martin and Synge approach.

.2. Agreement between the descriptions using the simulation
pproach and Eq. (71)

Fig. 3 depicts peaks simulated for an N value of 1000, assuming
quilibrium conditions (� = 0) and slow mass transfer for two  values
f the kinetic ratio (Eq. (67)): � = 0.4 and 0.8. The peaks were drawn
ccording to the simulation approach (symbols) and the predictions
arried out with Eqs. (31) and (71) (solid lines). In the latter case,

 Gaussian behaviour was assumed. As observed, the agreement
etween both approaches is highly satisfactory. The data show that
s the kinetic ratio (�) increases, the peak width is increased and the
eight, consequently, decreases. The simulated peaks show a small
kewness, according to Eq. (74), with a ratio between the right and
eft half-widths at 10% peak height of 1.045, 1.051 and 1.063 for
 = 0, 0.4 and 0.8, respectively.
The variance values calculated with the simulation approach

re compared in Fig. 4 with those predicted with Eq. (71) for hypo-
hetical compounds exhibiting different retention times (p values).
The high agreement between both approaches in different situa-
tions (i.e. different kinetic ratios and retention times) proves their
validity. The linear dependence between the peak variance and
the kinetic ratio (Eq. (71)) should be noted. The variance values
at � = 0 correspond to the equilibrium conditions. As the behaviour
of the chromatographic column is moved away from equilibrium, �
increases, and consequently, the peak width, which is more appar-
ent for the most retained compounds.

The term 2 �(1 − p) in Eq. (71) is the increase degree of band
broadening, expressed as peak variance due to the slow mass-
transfer process.
Fig. 4. Dependence of the peak variance on the deviation from the equilibrium con-
ditions for three hypothetical compounds exhibiting different retention times (tR,
min) (p values from top to bottom: 0.133, 0.2 and 0.4, respectively). The points were
obtained with the simulation approach and the lines correspond to Eq. (71). The
efficiency was assumed to be N = 1000.
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.3. Measurement of the deviations from the equilibrium
onditions

The model developed in this work to predict the variance in
low mass-transfer conditions includes an additional parameter
hat relates the mass transfer in the flow direction (�) with the

ass transfer between the mobile phase and stationary phase (�),
he kinetic ratio (�). This parameter measures the deviation degree
rom the equilibrium conditions, which depends on the mobile
hase flow rate. At increasing flow rate, the time interval available
o reach the equilibrium decreases. Consequently, the mass trans-
er between mobile phase and stationary phase will be moved away
rom the equilibrium.

We  designed an experimental approach to evaluate the devia-
ions from the equilibrium conditions in a chromatographic column
i.e. to obtain the mass-transfer kinetic ratio from experimental
eaks). For this purpose, the kinetic ratio was expressed as:

 = �

v
= �1

v
u = �1u (81)

here �1 is the mass-transfer kinetic constant in the flow direction
or a flow rate of 1 mL/min, and u is the flow rate. From Eqs. (71)
nd (81):

�2

t2
R

= 1
N

+ 2�1
(1 − p)

N
u (82)

The retention times and variances were obtained from the
xperimental data as the first moment about the origin, and the
econd moment about the mean, for the experimental elution pro-
les. For this purpose, the experimental peaks were numerically

ntegrated using the Simpson’s rule [25].
Fig. 5 depicts the experimental elution profiles for xipamide,

luted from a Zorbax column at several flow rates. Similar profiles
ere obtained for benzthiazide and furosemide, at their respective

etention times. The reduction of the height at higher flow rate is
ue to the relative peak broadening. Fig. 6 illustrates the change in
he �2/t2

R ratio for each compound. It can be seen that the behaviour

s linear for u > 1 mL/min, where the contribution of diffusion is neg-
igible. Eq. (82) describes this linear region. The slope of this line for

 given compound will offer an estimation of �1. The column effi-
iency, N, can be obtained from the intercept of the line. However,
Flow rate (mL/min)

Fig. 6. van Deemter plots for the probe compounds.

this equation does not consider the extra-column broadening (�2
0 ),

which will be only negligible for sufficiently retained compounds,
and which changes with the flow rate. From Eqs. (9),  (71) and (81):

�2 − �2
0 = t2

R
N

[
1 + 2�1

(
1 − t0

tR

)
u
]

(83)

where �2
0 was  obtained at each flow-rate from the extrapolation to

tR = 0 of the �2 versus t2
R plot, using the data of the three probe com-

pounds. Eq. (83) was  non-linearly fitted using also all experimental
(�2, �2

0 , tR, t0, u) data obtained for the three probe compounds in
the range 1–2 mL/min, in order to obtain the parameters N and �1.
At 1 mL/min, the retention times for the probe compounds were
17.72, 10.27 and 6.54 min, and the column dead time was 1.19 min.
The fitted parameters were N = 17500 and �1 = 0.21. Fig. 7 shows the
good agreement between the experimental data and the predicted
values according to Eq. (83).

2

Flow rate (min/m L)

Fig. 7. Dependence of the peak variance on the flow rate for the probe compounds
Experimental data (♦) and values predicted with Eq. (83) (�) are given.
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q. (83) is the column efficiency at equilibrium conditions [26],
hich is the theoretically maximal efficiency that could be achieved

t sufficiently rapid mass-transfer (v = ∞).

.  Conclusions

We have demonstrated that the Martin and Synge approach can
e extended to describe slow mass-transfer conditions between
he mobile phase and stationary phase. The proposed model pre-
icts an additional peak broadening due to the slow mass transfer,
hich agrees with the van Deemter description when the solute
iffusion is negligible. In contrast, the slow mass transfer does not
ield any significant peak skewness. One of the known factors that
roduce the peak skewness typically observed in liquid chromatog-
aphy is the behaviour described by non-linear isotherms, which
akes solutes to migrate at different velocities along the column,

epending on the mobile phase concentration.
The approach was validated by comparison with the simula-

ion of solute migration through the theoretical plates, where the
ransference of the mobile phase volume from one theoretical plate
o the next was assumed to occur in small steps, after which the

obile phase is homogenized. According to the proposed approach,
he theoretical plate has a physical meaning: in a chromatographic
olumn there are microscopic regions where a mixture is produced
etween the ıV volume of mobile phase that reaches a given region
nd the existing volume of mobile phase in that region.

The measurement of the band broadening in experimental peaks
t varying flow rate allows the evaluation of the kinetic ratio in the
xtended Martin and Synge model proposed in this work, which is

 parameter related to the excess of band broadening due to the
low mass transfer. It should be noted, however, that the extended
artin and Synge model described in this work has the same prac-

ical limitations of the original model: it considers that the partition
oefficient does not depend on the concentration, and that there is
o interaction among solutes.
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ppendix A.

To perform the transformation of Eq. (60) to the time-domain,
he function must be decomposed in simple fractions as follows:

n(r)=�N
(

r + s

(r + r1)(r + r2)

)N

=�N

N∑
i=1

(
ˇi

(r + r1)i
+ ıi

(r + r2)i

)
(A1)

Assuming that, close to the equilibrium, the flow rate (expressed
s the number of theoretical plates per time unit) is much smaller
han the mass-transfer rate between both phases (� � �), then
2 � r1 (see Eqs. (56) and (57)), and the ıi terms in Eq. (A1) will
e sufficiently small to make:

n(r) ≈ �N

N∑
i=1

ˇi

(r + r1)i
(A2)

The ˇi coefficients can be calculated by applying the Heaviside’s

over-up method [27]:

N−j = 1
j!

[
djG(r)

drj

]
r=−r1

= G(j)(r)r=−r1

j!
(A3)
 Chromatogr. A 1218 (2011) 5166– 5174 5173

where from Eq. (A1):

G(r) = fn(r)(r + r1)N =
(

�
r + s

r + r2

)N

(A4)

The first and second derivatives of Eq. (A4) are:

G(1)(r)r=−r1
= N˛N−1 � − ˛

R
(A5)

G(2)(r)r=−r1
= N(N − 1)˛N−2 (� − ˛)2

R2
− 2N˛N−1 � − ˛

R2
= N(N − 1)˛N−2 (� − ˛)2

R2

×
(

1 − 2˛

(N − 1)(1 − ˛)

)
(A6)

where

 ̨ = �(s − r1)
R

(A7)

and from Eqs. (56) and (57):

R =
√

(v + �)2 − 4�s = r2 − r1 (A8)

Also, since N � 1 and r2 � r1, R ≈ r2:

G(2)(r)r=−r1
≈ N(N − 1)˛N−2

(
� − ˛

R

)2
≈ N(N − 1)˛N−2

(
� − ˛

r2

)2

(A9)

The same holds for higher order derivatives:

G(j)(r)r=−r1
= N!

(N − j)!
˛N−j

(
� − ˛

r2

)j

(A10)

By substituting Eq. (A10) in Eq. (A3):

ˇN−j = N!
j!(N − j)!

˛N−j
(

� − ˛

r2

)j

(A11)

Taking into account that i = N − j, and from Eqs. (A2) and (A11):

fn(t) =
N∑

i=1

N!
(N − i)!i!

˛i
(

� − ˛

r2

)N−i 1

(r + r1)i
(A12)

Finally, considering the inverse Laplace transform (see Eq. (24)):

fn(t) =
N∑

i=1

N!
(N − i)!i!

˛i
(

� − ˛

r2

)N−i ti−1

(i − 1)!
e−r1t (A13)

which can be conveniently rewritten as:

fn(t) =
N∑

i=1

N!
(N − i)!i!

wi(1 − w)N−iri
1

ti−1

(i − 1)!
e−r1t (A14)

where:

w = ˛

r1
(A15)

The integration between zero and ∞ of Eq. (A14) should yield
the unity, since it is a normalized function:

N∑
i=1

N!
(N − i)!i!

wi(1 − w)N−i = (w + 1 − w)N = 1 (A16)
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